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1. Introduction

Nearly 25 years ago, Unger 1 ,2 suggested that a natural

computer architecture for image processing and recognition would

be a two-dimensional array of processing elements. Ideally,

in this approach, each of the processors is responsible for

one pixel (= one element of the image), with neighboring pro-

cessors responsible for neighboring pixels. Thus, using hard-

wired communication between neighboring processors, it becomes

possible to perform local operations on the image, or to detect

local image features, in parallel, with every processor simul-

taneously accessing its neighbors and computing the appropriate

function on its neighborhood.

Over the past two decades, several machines embodying this

concept have been constructed. The first of these was ILLIAC

III , which made use of a 36-by-36 processor array (by contrast,

the later ILLIAC IV used only an 8-by-8 array); it was intended

for the analysis of "events" in nuclear bubble chamber images by

examining 36-by-36 "windows" of the images. Later machines,

4 5 6such as CLIP , DAP , and MPP , use arrays of up to 128 by 128

processors, and must also be applied blockwise to larger images.

This article reviews the basic techniques of image proces-

sing using two-dimensional arrays of processors, or "cellular

arrays". It also discusses various extensions and generaliza-

tions of the cellular array concept and their possible implementa-

tions and applications.



2. Cellular arrays

A cellular array is a two-dimensional array, usually assumed

to be rectangular in shape, of processors ("cells") each of which

can directly communicate with its neighbors in the array. Here

"neighbors" can be defined in various ways; we shall assume,

for simplicity, that each cell is connected to its four hori-

zontal and vertical neighbors. Note that the cells on the bor-

ders of the array have only three neighbors each, and the cells

in the four corners of the array have only two each. It is

assumed that a cell knows which of its neighbors is which, i.e.,

it can send a different message to each neighbor, and when it

receives messages from them, it knows which message came from

each neighbor.

We will not be concerned here with hardware aspects, but

will treat the cells and their intercommunication on an abstract

level. It should be pointed out, however, that the two-dimensional

array structure is very appropriate in terms of layout on a set

of (two-dimensional) chips. The connections between cells and

their neighbors do not have to cross one another, and connec-

tions between two chips are needed only for the cells along the

chip borders, so that they can be handled by connectors located

around the borders. Figure 1 shows, schematically, a portion of

a cellular array.

To use a cellular array for image processing, we give each

cell the value of an element of the image (a pixel) as input

data. If the cellular array is smaller than the image, this



means that we must process the image a block at a time, and

keep track of what happens where the blocks meet or overlap

(Figure 2a). Alternatively, if the cells have enough stor-

age capacity, we can give each of them a block of image

pixels as input; neighboring cells must then exchange infor-

mation about all the pixels located on the borders of their

blocks (Figure 2b). In the cellular arrays actually built up

to now, each cell has very little memory (e.g., at most 1024

bits), so this alternative would not be practical. We shall

assume here, for simplicity, that each cell has only a single

pixel as input, but we shall not discuss how to handle the

"seams" between blocks of the image if it is necessary to pro-

cess the image blockwise.

The principal advantage of using a cellular array for image

processing is that the processors can all operate in parallel

on the neighborhoods of their pixels, so that local operations

can be performed on the entire image in an amount of time that

does not grow with the image size. As a very simple example,

suppose we want to average each pixel with its neighbors. We

can do this by having every processor execute the following

sequence of instructions, where each instruction is carried out

by all processors in parallel:

1. Add own value into register (initially register is zero)

2. Read value of north neighbor and add into register

3-5. Analogous to step (2) for east,south, and west neighbors



6. Divide contents of register by 5*

7. Replace own value by contents of register

Given a suitable repertoire of such instructions, a wide variety

of local image operations can be carried out in parallel. If

a cell has too little memory to store a program composed of

such instructions, the sequence of instructions to be carried

out can be broadcast to all the cells. (In some of the exist-

ing cellular array machines, in fact, the cells have very little

memory, and they operate on bits rather than on integers or

real numbers; such a machine would read the neighbor values in

a bit at a time, and perform the addition by a series of bit-

wise logical operations.)

By contrast, a conventional computer, having only a single

processor, can only perform the averaging process for one

pixel at a time. Thus the total time required to do local

image averaging, or any other local operation, on a conventional

computer is proportional to the image area. In other words,

for an n-by-n image, using a cellular array increases the amount
2

of hardware needed by a factor proportional to n , but it de-

creases the time required by a similar factor.

*We ignore here the special treatment required for the pixels on

the borders of the image. The results obtained will be meaning-
ful only for non-border pixels.



Unfortunately, the time required to perform local opera-

tions is not the whole story; time is also needed to input

the image into a cellular array and to output the processed

image. In practice, the rows of the image can be shifted

into the rows of the array in parallel, so that the total

time for readin or readout of an n-by-n image is proportional

to n rather than to n2 ; but this still grows with the image

size, though not as quickly. Similar problems arise if we

want to output information about the image, e.g., if we want

to count the number of occurrences of a given value (as in

histogramming); messages representing these occurrences must be

shifted to where they can be (counted and) output, which still

takes time proportional to n. Thus the speedup resulting from

2the use of a cellular array (n processors) is not as great as

it might seem at first glance (order(n), not order(n 2), faster

than a single processor).



3. Cellular array algorithms

A wide variety of image processing algorithms appropriate

for cellular arrays have been developed; some of them are

straightforward, but others are very unobvious. For example,

algorithms exist7'8 that will count, in time proportional to

n, the number of connected components of l's in an n-by-n

array of l's and O's (a two-valued image), or that will assign

a unique label to the pixels belonging to each such component;

these algorithms are quite nontrivial (see below).

In much of the theoretical work on the computational power

of cellular arrays, it has been assumed that the amount of

memory in a cell remains bounded no matter how many cells

there are. With this assumption, the cells can be regarded

as finite-state machines, and the cellular array is thus a

two-dimensional "bounded cellular automaton" (BCA). Efficient

algorithms for BCA's have been extensively studied; in fact,
9,10,11

three books on BCA's appeared at the end of the 1970's

From a practical standpoint, the bounded-memory assumption

is unnecessarily restrictive; it implies, in particular, that

a cell does not have enough memory to store the coordinates of

its position in the array! Realistically, when we are able

to build very large cellular arrays, we will certainly be able

to give each cell a modest amount of memory, say growing loga-

rithmically with the array size. (Note that this is now suffi-

cient for a cell to store its coordinates, which are k-bit



numbers for an array of size 2k by 2 k) When we do this,

it simplifies the design of cellular array algorithms for

12many basic tasks 1 . A variety of such algorithms are sketched

in the following paragraphs.

a. Local operations (local property computation)

A local image property is one whose (output) value at a

given pixel is a function of the (input) values of only a

(small) set of the pixel's neighbors (possibly including

the pixel itself). A cellular array can compute a local

property in parallel at each pixel by shifting the values

of the needed neighbors until they reach the processor

corresponding to the pixel; once it has received them, it

computes the desired function. As already pointed out, the

amount of time required to do this in parallel is independent

of the image size. Local properties are very widely used

in image processing for such purposes as smoothing, deblurring,

edge detection, texture analysis, etc.

b. Value counting (histogramming)

To count the number of occurrences of a given value in

an image, we must send messages (e.g., l's) representing the

occurrences to a central counter where they can be summed.

For example, we can shift the l's leftward in each row of the

image and sum them in the leftmost cell. We can then shift

the sums in these leftmost cells upward and sum them in the

* ~ 1



upper left cell. If we assume that addition of two numbers

takes unit time, then the total time required for the shifting

and summing is proportional to the width + height of the image,

i.e., of order n [O(n)] for an n-by-n image. This method can

be used to construct the gray level histogram of an image in

O(n) time. Other types of image statistics, such as gray level

cooccurrence matrices, can also be computed in O(n) time.

c. Moments and transforms

To compute the value of a given moment of the image, or of

a given coefficient in a transform (Fourier, Hadamard, etc.)

of the image, we must multiply the image pixelwise by the

appropriate basis matrix and sum the results. The basis matrix

values can be computed by or "broadcast" to the pixels; e.g.,

in the Fourier case, we start with the appropriate root of

unity, and raise it to a higher power each time we shift it.

Once they have been computed or received, the multiplication

is done in a single parallel step; and the results can then be

shifted and summed. Evidently, the broadcasting and summing

steps require 0(n) time.

d. Connected components

Given an array of O's and l's, a local "shrinking" process

can be defined7 that collapses each component of l's into a

single 1 (which then disappears) in time proportional to the dia-

meter of the component's circumscribing rectangle. To count the



components of l's, we change the singleton l's, as they dis-

appear, into special marks, wnich we then shift to the upper

left corner of the image and count. The entire process takes

O(n) time. Labelling the components is more complicated. We

first identify a distinguished pixel in each component, which

can be done in O(n) time, and we assign a unique label to each

distinguished pixel (e.g., its coordinates). Finally, we con-

struct a minimal spanning tree of each component, rooted at

13
the distinguished pixel , and broadcast each label to every

node of its tree; this takes time proportional to the tree

height.

e. Region representations

An array of O's and l's can be specified in several different

ways. Each row can be represented by "run length code" which

gives the successive lengths of the runs of O's and l's (or

vice versa) that comprise the row. Each connected component

can be represented by the "chain codes" of its borders (de-

fining the sequence of moves required to travel around each

border), together with the coordinates of a starting point on

each border. The set of l's can be represented as a union of

maximal blocks (e.g., upright squares); the centers of these

blocks turn out to be the oixels where "chessboard distances"

from the set of O's are local maxima. It is not difficult to

define cellular array algorithms 12 that construct each of these



representations from a given array of O's and l's, or that

reconstruct the array from the representation. The time re-

quired depends on the image diameter (i.e., 0(n))and on the

compactness of the representation; but one should not use such

a representation unless it is in fact compact.

f. Region property computation

It is straightforward to compute properties of a region such

as its area and perimeter by using a minimal spanning tree to

sum the number of pixels (or border pixels) in the region.

Similarly, the height and width of a region can be computed

by using the tree to determine the highest and lowest x and y

coordinates of the pixels in the region. The "thickness" of

a region is twice the greatest distance from any region pixel

to the border of the region; the distances can be computed by

propagating a signal from every border pixel, and incrementing

a counter at each pixel until the signal reaches it. Region

shape properties such as compactness and elongatedness can be

determined in terms of area, perimeter, and thickness; and shape

complexity can be measured as the sum of the (absolute) angles

defined by successive triples of border pixels. The convexity

of a region is more difficult to determine using a cellular

14
array



4. One-dimensional cellular arrays ("cellular strings")

Two-dimensional cellular arrays are still quite expensive

to build; the largest ones now in existence are only 128 by

128, and do not have very much memory per processor. One-

dimensional cellular arrays are much more economical, and

could be used for parallel processing of various types of

waveforms. In the following paragraphs we consider two ways

of using one-dimensional cellular arrays ("cellular strings")

for image-related tasks.

As mentioned earlier, a region border (or a curve) can be

represented by specifying the sequence of moves (from neighbor

to neighbor) required to traverse it; this sequence is called

a chain code. Cellular strings can be used to efficiently

derive information about curves or regions, given the chain

codes of the curves or of the regions' borders5 (Similar

remarks apply if the curves or borders are specified as poly-

gons having sides of arbitrary length, rather than as sequences

of unit moves. Such representations are extensively used in

digital cartography.] For example, the following can be deter-

mined in time proportional to the number of links in the chain

(or chains, if two curves are involved): Whether the curve is

a digitized straight line; the points at which it touches or

intersects itself; and whether one (non-selfintersecting) curve

surrounds another. Similarly, the chain code(s) of the border(s)

of the union or intersection of two regions can be constructed;

and various types of polygonal approximations to a curve can be

constructed.



A cellular string can also be used to process a two-

dimensional image by scanning it row by row and operating in

16
parallel on each row . It can perform local operations by

storing several rows in order to obtain the needed neighbors'

values; note that this now takes O(n) time for an n-by-n image,

because of the need for a row-by-row scan. On the other hand,

it can still perform counting operations in only O(n) time,

e.g., summing the l's in each column as it scans, and then

shifting and summing the column sums when it reaches the bottom

row. Some tasks probably require more than O(n) time, but many

basic operations require only O(n) time at the cost of only

O(n) hardware, thus providing an attractive alternative to the

2(n2 hardware needed in a two-dimensional cellular array.

0(n



5. "Cellular hypercubes" and "cellular pyramids"

In this section we suggest some extensions of the cellular

array concept that yield a substantial increase in the speed

at which counting tasks can be performed.

One way of achieving this speed increase is to allow each

cell to communicate not just with its immediate neighbors, but

also with cells at distances 2,4,8,... from it (Figure 3). For

an n-by-n array, this requires O(log n) connections for each

cell, which is not an unreasonable number in view of the fact

that we have already allowed the amount of memory in a cell to

be O(log n). (It is not obvious, though, how these connections

might be physically realized on a two-dimensional chip; we

ignore this implementation issue here.) The resulting network

of cells is similar to a (log n)-dimensional hypercube, in

which any cell can be reached from any other cell in O(log n)

moves from neighbor to neighbor. It is clear how this allows

counting tasks to be carried out in O(log n) time1 7 ,18 .

An alternative approach 1 9 allows the number of connections

to a cell to remain bounded, but at the cost of increasing

the number of cells by a factor of 2 in the one-dimensional case

or of 11 in the two-dimensional case. In one dimension, we use

a "stack" of cellular strings, each half the length of the pre-

ceding one. This yields an exponentially tapering "triangle"

in which the total number of cells is n + E + n + ...<2n. Here
2 4

each cell is connected to its two "brothers" in its own string,

.4



and also to two "sons" in the next larger string (if any) and

to a "father" in the next smaller one (if any), as shown in

Figure 4; thus a general cell has five neighbors. Note that

this connection structure can be easily laid out on a two-

dimensional chip. [In two dimensions, analogously, we wold

use a stack of cellular arrays, each one-quarter the area of

the preceding one, yield an exponentially tapering "pyramid"

in which the total number of cells is n + 2 + + ...< 4n
4 163

Here, we would connect each cell to its four "brothers" in its

own array, to four "sons" in the next larger array (if any), and

to a "father" in the next smaller array (if any) - a total of

nine neighbors. Unfortunately, it is not clear how to lay out

these connections on a chip.] This scheme too allows counting

in O(log n) steps, since cells can pass their counts to their

fathers, so that the total count is obtained at the apex of the

triangle (or pyramid), which has height log n. Note that count-

ing requires only the son/father connections, not the brother/

brother connections, and the resulting complete binary tree (or

quadtree, in the two-dimensional case) can in fact be laid out on

a chip. However, we need the brother/brother connections in

order to perform local operations, so that layout still poses

a problem.

. . ... ........... , , ~~~~~.- . . .4. .. ,..,.A, , ,. .. .. .



6. "Cellular graphs"

Cellular strings, arrays, triangles, pyramids, etc. are

all composed of cells, each of which is connected to a fixed

set of neighbors. More generally, one can consider "cellular

graphs" in which the neighbor relationship is arbitrary, sub-

ject to the restriction that each cell has bounded degree, i.e.,

a bounded number of neighbors (or perhaps degree that grows

logarithmically with the number of cells, as in the case of a

hypercube). Generalizations of basic image processing algori-

thms, including local property computation, counting, connected

component analysis, etc. can be defined for such cellular graphs

operating on graph-structured input202122

Cellular graphs that have fixed graph structures are of

limited interest, unless we have many sets of input data to be

processed that all have the same structure. In image pro-

cessing, various types of graph structures do arise - e.g.,

when we segment an image into regions, we can regard these

regions as the nodes of a graph, with adjacency between regions

defining the neighbor relationship on the nodes. However,

these graphs differ from image to image, and they even vary

in the course of processing a single image as we modify the

segmentation by merging or splitting regions. Thus it would be

of greater interest to consider cellular graphs in which the

initial graph can be defined arbitrarily and can then modify

itself in the course of a computation.



A class of such "reconfigurable" cellular graphs has in

fact been studied 2 3'2 4. It has been shown how such a cellular

graph can be initially configured to represent a given seg-

mentation of a given image, e.g., in terms of its region adja-

cency graph, and this graph can modify itself (and recompute

the properties of the regions) as regions merge and split.

Note that the region adjacency graph can have very high degree,

since many regions can be adjacent to a given region. We can

obtain a graph of bounded degree by letting the nodes represent

boundary segments where pairs of regions meet, and letting

adjacencies of these segments define the neighbor relationship.

An alternative is to represent the segmented image by a "quad-

tree", defined by recursive subdivision into quadrants, sub-

quadrants,..., until blocks of constant value are obtained. In

this approach too, we can construct a "cellular quadtree"

corresponding to the quadtree of the image, and use it to compute

25
the region properties

Reconfigurable cellular graphs allow region-level image

processing operations to be carried out in parallel, by assign-

ing cells to the regions (or other pieces of the segmented im-

age)and modifying the neighbor relationship on the cells, in

parallel, as the segmentation is modified. The parallelism

involved here is not aL great as in pixel-level image proces-

sing, since there are relatively few regions (typically several



hundred in a conservatively segmented image) compared to the

original number of pixels. However, even this degree of paral-

lelism may be very useful when it comes to tasks involving

combinatorial search, e.g., looking for subgraphs of the given

graph that are isomorphic to a given "model" graph.

Some types of (fixed-structure) cellular graphs can be im-

plemented in hard-wired form (arrays and trees, for example),

but when it comes to reconfigurable cellular graphs, a dif-

ferent approach is evidently needed. Let us think of the cells

as communicating via some standard type of interprocessor com-

munication network. The pairs of cells that can communicate

directly with one another ata given moment define the neighbor

relationship of the cellular graph at that moment. As an exam-
26

ple, consider the ZMOB multiprocessor; it consists of 256

Z8OA microprocessors that communicate with each other via a fast

bus. Evidently, ZMOB can simulate a reconfigurable cellular

graph having up to 256 cells. It can also be used for image

processing at the pixel level, by assigning blocks of pixels

to the processors (which have substantial amounts of memory -

up to 64k bytes each) and allowing them to communicate as
27

necessary . Thus ZMOB should be useful for both pixel-level

and region-level image processing and recognition.



7. Concluding remarks

Cellular arrays are a classical model for image processing

and recognition at the pixel level. Such arrays are now being

built in reasonable sizes, but they are still quite costly,

and are limited in speed for many tasks due to communication

delays. Simpler architectures, such as cellular strings, can

be built at low cost today, and can be used for a variety of

practical tasks, e.g., chain code or waveform processing, or

"serial/parallel" row-by-row processing of two-dimensional

images. (Modifications to the basic cellular array, such as

the cellular hypercube or pyramid, could overcome some of the

communication bottlenecks, but would be harder to implement.)

Reconfigurable "cellular graphs" can be used for image proces-

sing at the region level; they require relatively small num-

bers of cells, and can be simulated by multi-microprocessor

systems such as ZMOB that permit flexible interprocessor

communication.

In the 25 years since cellular arrays were first proposed

for parallel image processing, hardware technology has evolved

to the point that such special-purpose architectures can finally

be built at reasonable cost. This will lead to major increases

in the computer power available for image processing, which should

in turn lead to the development of algorithms that are much more

powerful than those currently available.
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Figure 1. A two-dimensional cellular array.



I! I

----------------------- ----------- -+--------------------------------

I I

(a)

Figure 2a). One way of using a small cellular array (m by m) to
process a large image (n by n) is to process one m-by-m block of
the image at a time. This does not provide for communication
across the "seams" where the blocks meet (dotted lines in the
Figure); information about the pixels adjacent to the seams must
be stored, or overlapping blocks must be used.
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(b)

Figure 2b). Another way is to give each cell as input an

(n)-by-(n) block of the image; a pair of neighbor-

ing cells must now exchange information about
pairs of neighboring pixels along their commonm

border.



Figure 3. A one-dimensional "cellular hypercube" (only the connec-
tions to neighbors at distances 1, 2, and 4 are shown, for sim-
plicity).

Figure 4. A "cellular triangle".




